Unsupervised classification by soft computing techniques: algorithms of fuzzy c-means clustering

Sadaaki Miyamoto
Department of Risk Engineering
School of Systems and Information Engineering
University of Tsukuba
Ibaraki 305-8573, Japan
E-mail: miyamoto@risk.tsukuba.ac.jp

Abstract—We overview methods of fuzzy c-means clustering as a representative technique of unsupervised classification by soft computing. The basic framework is the alternate optimization algorithm originally proposed by Dunn and Bezdek is reviewed and two more objective functions are introduced. An additional variable of controlling volume size is included as an extension. Moreover a method of the kernel trick for obtaining nonlinear cluster boundaries is moreover considered and a simple numerical example is shown.

I. INTRODUCTION

The most well-known technique of unsupervised classification is the fuzzy c-means clustering (abbreviated as FCM). There are many variations of FCM clustering [1], [2] have been investigated, and there are still rooms for further study in the fundamental and methodological aspect. In this paper we provide a perspective in FCM methodology.

Although most studies in fuzzy c-means use the objective function proposed by Dunn [1] and Bezdek [2] and their variations, there are other types of objective functions for the same purpose of fuzzy c-means clustering.

Namely, the possibility approach by Krishnapuram and Keller [9] is also well-known. Second, the entropy-based approach [12], [15] has been proposed which has many implications and extensions. In fact, it has been shown by Ichihashi et al. [7] that an extension of this method encompasses the Gaussian mixture model of the statistical approach [16].

In this paper we overview and propose two objective functions; first is the entropy-based function and second is derived from the one of possibilistic clustering. The two functions can be used for both the ordinary and possibilistic clustering.

A variation of this approach is to incorporate an additional variable for controlling cluster volume sizes. We discuss this variation for the two objective functions.

The second topic in this paper is a method to obtain nonlinear cluster boundaries. As the basic methods of crisp and fuzzy c-means produce piecewise linear boundaries between clusters, an ordinary type of their extensions cannot derive strongly nonlinear boundaries. For this purpose the kernel trick used in support vector machines [18] is employed whereby the alternate optimization algorithm of fuzzy c-means is transformed into updating dissimilarity values between an object and a cluster center. A typical numerical example of a nonlinear boundary is shown.

Throughout this paper we stick to the original idea of the alternate optimization and avoids ad hoc generalizations to fixed point iterations.

II. OBJECTIVE FUNCTIONS OF FUZZY c-MEANS

A. Preliminaries

Let the set of objects for clustering be $X = \{x_1, \ldots, x_n\}$, they are points in the p-dimensional Euclidean space: $x_k = (x_{k1}, \ldots, x_{kp})^T$. On the other hand, a cluster i is represented by the center $v_i = (v_{i1}, \ldots, v_{ip})$.

The membership matrix is $U = (u_{ik})$, where u_{ik} is the degree of membership of x_k to cluster i; the sequence of the cluster centers is $V = (v_1, \ldots, v_c)$.

The basic alternate optimization algorithm of fuzzy c-means is the iteration of FC in the following [2].

FC: Basic Fuzzy c-Means Algorithm.

FC0. Set the initial value of V.
FC1. Solve $\min_{U \in M} J(U, \tilde{V})$ and let \tilde{U} be the optimal solution.
FC2. Solve $\min_{V} J(\tilde{U}, V)$ and let \tilde{V} be the optimal solution.
FC3. If the solution (\tilde{U}, \tilde{V}) is convergent, stop; else go to FC1.

End of FC.

The ordinary constraint for U is

$$M = \{ (u_{ik}) : u_{ik} \in [0, 1], \sum_{i=1}^c u_{ik} = 1, \forall k \}.$$

As the objective function $J(U, V)$ the following has mainly been considered.

$$J_0(U, V) = \sum_{i=1}^c \sum_{k=1}^n (u_{ik})^m \|x_k - v_i\|^2 = \sum_{i=1}^c \sum_{k=1}^n (u_{ik})^m d_{ik},$$

where we put

$$d_{ik} = \|x_k - v_i\|^2$$
The optimal solutions of \(u_{ik} \) and \(v_i \) are respectively given by

\[
\begin{align*}
 u_{ik} &= \left[\sum_{j=1}^{c} \left(\frac{\|x_k - v_j\|^2}{\|x_k - v_j\|^2} \right) \right]^{-1} \\
 &= \left[\sum_{j=1}^{c} \left(\frac{d_{jk}}{d_{jk}} \right) \right]^{-1},
 \\
 v_i &= \frac{\sum_{k=1}^{n} (u_{ik})^m x_k}{\sum_{k=1}^{n} (u_{ik})^m}.
\end{align*}
\]

When we put

\[
g_{ik}^0 = \frac{1}{\theta_{ik}}
\]

then

\[
u_{ik} = \frac{g_{ik}^0}{\sum_{j=1}^{c} g_{jk}^0}
\]

(Krishnapuram and Keller [9] proposed the method of possibilistic clustering: the same alternate optimization algorithm FC is used in which the constraint \(M \) is not employed but nontrivial solution of

\[
\sum_{k=1}^{n} u_{ik} > 0, \quad 1 \leq i \leq c
\]

should be obtained. For this purpose the objective function \(J_0 \) cannot be employed since the optimal \(U \) is trivial: \(u_{ik} = 0 \) for all \(i \) and \(k \). Hence a modified objective function

\[
J_{pos}(U, V) = \sum_{i=1}^{c} \sum_{k=1}^{n} (u_{ik})^m d_{ik} + \sum_{i=1}^{c} \sum_{k=1}^{n} \sum_{l=1}^{n} (1 - u_{ik})^m
\]

has been proposed whereby the solution becomes

\[
u_{ik} = \frac{1}{1 + \left(\frac{d_{ik}}{\theta_{ik}} \right)^m}
\]

while the optimal \(v_i \) remains the same.

The objective function \(J_0 \) cannot be used in possibilistic clustering and \(J_{pos} \) is unavailable for the ordinary fuzzy \(c \)-means. Thus the two methods have nothing in common but the alternate optimization algorithm. In contrast, we consider other objective functions usable for the both methods.

B. Nonstandard objective functions

We consider the following two objective functions. The first is entropy-based and the second is simplified from \(J_{pos} \) by putting \(m = 2 \).

\[
\begin{align*}
 J_1(U, V) &= \sum_{i=1}^{c} \sum_{k=1}^{n} \left\{ u_{ik} d_{ik} + \lambda^{-1} u_{ik} \log u_{ik} \right\} \\
 J_2(U, V) &= \sum_{i=1}^{c} \sum_{k=1}^{n} \left\{ (u_{ik})^2 d_{ik} + \zeta^{-1} (1 - u_{ik})^2 \right\}.
\end{align*}
\]

Put

\[
\begin{align*}
 g_{ik}^1 &= e^{-1} \exp(\lambda d_{ik}) \\
 g_{ik}^2 &= \frac{1}{1 + \zeta d_{ik}}
\end{align*}
\]

Then the solution for the possibilistic clustering is

\[
u_{ik} = g_{ik}^1
\]

when \(J_1 \) is used; it is

\[
u_{ik} = g_{ik}^2
\]

when \(J_2 \) is used.

Consider next the ordinary fuzzy \(c \)-means where the constraint \(M \) is used. Now the solutions are

\[
u_{ik} = \frac{g_{ik}^1}{\sum_{j=1}^{c} g_{jk}^1}
\]

and

\[
u_{ik} = \frac{g_{ik}^2}{\sum_{j=1}^{c} g_{jk}^2}
\]

respectively for \(J_1 \) and \(J_2 \) (cf. also [3]).

We thus observe that \(J_1 \) and \(J_2 \) are usable for both the ordinary fuzzy \(c \)-means and the possibilistic clustering. Moreover we notice the above relationship of solutions of \(u_{ik} = g_{ik}^l \) and \(u_{ik} = g_{ik}^l / \sum_j g_{jk}^l (l = 1, 2) \) between the both methods.

Notice moreover that there are features of ‘regularization’ in the two objective functions. \(J_0 \) adds the entropy term to the objective function of the crisp \(c \)-means and regularizes, or fuzzifies, the solution \(U \). On the other hand, \(J_2 \) regularizes the ordinary objective function \(J_0 \) by eliminating the singularity in \(g_{ik}^0 \).

C. Variable for controlling cluster volume size

Let us consider an extension of the entropy-based method. Although this extension has been discussed by Ichihashi et al. [7] in a more general form including the covariance matrix, we do not discuss the covariance matrix here for simplicity, but the use of covariance variable is not difficult [5], [6], [7].

That is, a generalized objective function where an additional variable \(\alpha = (\alpha_1, \ldots, \alpha_c) \) for controlling cluster volume sizes is used:

\[
J'_1(U, V, \alpha) = \sum_{k=1}^{n} \sum_{i=1}^{c} u_{ik} \|x_k - v_i\|^2 + \lambda^{-1} \sum_{k=1}^{n} \sum_{i=1}^{c} u_{ik} \log \alpha_i^{-1} u_{ik}
\]

The constraint for \(\alpha \) is

\[
A = \{ \alpha : \sum_{i=1}^{c} \alpha_i = 1, \alpha_i \geq 0, i = 1, \ldots, c \}.
\]

Then the alternate optimization is as follows.

FC': An Extended Algorithm of Fuzzy \(c \)-Means.

FC'0. Set initial value of \(\tilde{V}, \tilde{\alpha} \).

FC'1. Solve \(\min_{U \in M} J(U, \tilde{V}, \alpha) \) and let the optimal solution be \(\tilde{U} \).

FC'2. Solve \(\min_{\tilde{V}} J(\tilde{U}, \tilde{V}, \alpha) \) and let the optimal solution be \(\tilde{V} \).

FC'3. Solve \(\min_{\alpha \in A} J(\tilde{U}, \tilde{V}, \alpha) \) and let the optimal solution be \(\tilde{\alpha} \).
FC'4. If the solution \((\hat{U}, \hat{V}, \hat{\alpha})\) is convergent, stop; else go to FC'1.

End of FC'.

The optimal solutions are

\[
\begin{align*}
u_i &= \frac{\sum_{j=1}^{c} \alpha_j g_{jk} v_k}{\sum_{k=1}^{c} \sum_{j=1}^{n} \alpha_j g_{jk}} \\
\alpha_i &= \frac{\sum_{k=1}^{c} \alpha_k}{n}
\end{align*}
\] (9)

The corresponding extension of the second objective function is

\[
J_2'(U, V, \alpha) = \sum_{i=1}^{c} \sum_{k=1}^{n} \alpha_i^{-1} (u_i)_k^2 d_{ik} + \zeta \sum_{i=1}^{c} \sum_{k=1}^{n} \alpha_i (1 - \alpha_i^{-1} u_i)_k^2
\]

The optimal solutions of the alternate minimization are

\[
\begin{align*}
u_i &= \frac{\sum_{j=1}^{c} \alpha_j g_{jk} v_k}{\sum_{k=1}^{c} \sum_{j=1}^{n} \alpha_j g_{jk}} \\
\alpha_i &= \frac{\left(\sum_{k=1}^{n} (u_i)_k^2\right)^{\frac{1}{2}}}{\sum_{j=1}^{c} \left(\sum_{k=1}^{n} (u_i)_k^2\right)^{\frac{1}{2}}}
\end{align*}
\]

III. NONLINEAR CLUSTER BOUNDARIES

Recently support vector machines have been studied by many researchers [18]. Nonlinear classification technique therein uses the kernel trick, that is, a mapping into a high-dimensional feature space of which the functional form is unknown but the inner product has an explicit representation of a kernel function.

We overview the application of the kernel trick to fuzzy c-means [14].

Let a mapping defined on the data space into a high-dimensional feature space be \(\Phi(x) : \mathbb{R}^p \rightarrow H; H\) is in general a Hilbert space of which the inner product and the norm are respectively denoted by \(\langle \cdot, \cdot \rangle\) and \(\| \cdot \|_H\). The explicit form of \(\Phi(x)\) is unknown but the product is given by a kernel function:

\(K(x, y) = \langle \Phi(x), \Phi(y) \rangle\).

Most important kernel function is the Gaussian kernel

\(K(x, y) = \exp[-const \|x - y\|^2]\)

which is used in the numerical example below.

The following objective function is used instead of \(J_1\).

\[
J_1^K(U, V) = \sum_{i=1}^{c} \sum_{k=1}^{n} \left(\|u_i\|_H^2 - v_i\right) + \left(\sum_{k=1}^{n} u_i \log u_i \right)
\]

For \(J_0\) and \(J_2\), the corresponding objective functions are analogously defined but we omit the detail.

We proceed to consider the solution in the alternate optimization. The solution for \(U\) is given by the same formula of (9) but the center is

\[
v_i = \frac{\sum_{k=1}^{n} u_{ik} \Phi(x_k)}{\sum_{k=1}^{n} u_{ik}}
\]

which cannot be calculated, since the explicit form of \(\Phi(x_k)\) is unavailable.

We hence substitute (12) into

\[
d_{ik} = \|\Phi(x_k) - v_i\|_H^2
\]

After some manipulation, we have

\[
d_{ik} = K_{kk} - \frac{2}{U_i} \sum_{j=1}^{n} u_{ij} K_{jk} + \frac{1}{U_i^2} \sum_{j=1}^{n} \sum_{l=1}^{n} u_{ij} u_{il} K_{jl}
\]

where

\[
U_i = \sum_{k=1}^{n} u_{ik}
\]

\[
K_{jk} = \langle \Phi(x_j), \Phi(x_k) \rangle.
\]

Therefore the alternate optimization of FC is reduced to the iteration of calculating \(U\) by (12) and \(d_{ik}\) by (14) until convergence of \(U\).

The iterative formulas for \(J_0, J_2, J_1', \) and \(J_2\) are derived likewise. We omit the detail.

Remark: A crisp c-means algorithm using the kernel trick has been proposed by Girolami [4]; a variation of crisp c-means algorithm has been studied by Miyamoto et al. [13].

IV. AN ILLUSTRATIVE EXAMPLE

We discuss a simple and typical illustrative example of a nonlinear cluster boundary. Figure 1 shows a data set classified by the ordinary fuzzy c-means using \(J_0\) with \(m = 2\). The two clusters are shown by \(\Box\) and \(\times\). Two small circles \(\bigcirc\) show cluster centers. Apparently, the two circular groups recognized by sight cannot be separated by the ordinary fuzzy c-means, since one group is inside the other and hence the cluster boundary should be circular, whereas the crisp and fuzzy c-means produce the Voronoi regions [8] with piecewise linear boundaries in general. It is also clear that such circular boundary cannot be obtained by using extensions such as \(J_1'\) and \(J_2\).

Figure 2 has been obtained from the method of the kernel trick using the Gaussian kernel with \(const = 0.1\). The crisp and fuzzy c-means methods [14], [13] produced the same clusters.
ACKNOWLEDGMENT

This study has partly been supported by the Grant-in-Aid for Scientific Research (B), Japan Society for the Promotion of Science, No.16300065.

REFERENCES

V. CONCLUSION

We have overviewed two objective functions which is employed for both the fuzzy c-means and possibilistic clustering. Moreover an additional variable for controlling cluster volume sizes has been introduced. Such additional variables enable to generate cluster boundaries with quadratic curves, but stronger nonlinearities cannot be handled by the ordinary methods.

Hence the use of the kernel trick has been considered and a new iterative formula has been derived. A typical example of a nonlinear cluster boundary has been shown.

Entropy-based clustering has been considered by several authors both for the fuzzy c-means [10, 12, 15, 7] and possibilistic clustering [3]. Moreover this method has close relationships with statistical models [7, 11, 16, 17].

Although recent studies on fuzzy clustering is more focused on applications than theories, there are many rooms for further theoretical development and advanced algorithms. Relationships with neural network techniques should furthermore be investigated.